Scientists Simplifying Science

Tag archive

education

Facing adversities with alacrity – the odyssey of an aspiring Data Scientist

in ClubSciWri/Face à Face/That Makes Sense/Theory of Creativity by

There’re always stories about people who flourish or aspire to flourish while tackling challenges and setbacks during their training or profession. This time I bring to you the adventure of Urszula Czerwinska. Urszula, or Ula as her friends call her, is a Ph.D. student at the Institut Curie, Paris. Throughout her higher education, she’s donned the hats of an entrepreneur, a blogger, and that of an aspiring Data Scientist. She’s encountered her fair share of challenges during her education, but as we’ll learn, it’s the perseverance that drives a person to fulfil his/her passion. Ula’s tale highlights the determination and resilience required to achieve what at one point may seem inconceivable.

“I’ll never doubt that my parents have always had the best intentions for me. But they believed in the idea of ‘predisposition’. Simply put, one must perfect their skills for the talent they possess, rather than learning something completely new. That’s why I never got involved with sports, I didn’t go to art school (my drawings were good, but that wasn’t enough). I was shy as a kid and that’s why my parents advised me to choose a career that doesn’t involve a lot of social interaction. I don’t agree with the dogma of predisposition any more. Of course, it’s easy for some to be good in maths and for others in sports. But it doesn’t mean that one cannot learn. People change, I changed a lot through my experiences. I don’t aim for the Olympics, but I feel content going to the gym or dance classes. I previously considered it as a waste of time as I couldn’t be the best at them. And that so because I wasn’t ‘predisposed’ to sports. In my opinion, our future lies in our own hands. We can convert our weakness into strengths, only if we want to, and if we are ready to invest our time and efforts doing that. I also think that we have the capability of changing our thinking – to forge the path of our education and our career. It’s actually a proof that we can always get better and improvise.” – Urszula ‘Ula’ Czerwinska.

The journey begins – there’s plenty to learn

Ula’s Polish. She left for France at the age of 18 to pursue a joint degree in Biology and Mathematics in Roscoff. During her Bachelor’s, she studied an entirely new subject – programming. “And here’s the funny part – I sucked at it in the beginning”, she says. “I had troubles typing on a French keyboard (which is an AZERTY one)! While most of the students were finishing their exercises, I was still looking for the “?” button on the keyboard.” At one point, self-annoyance took a toll on her and she spent a lot of time studying using online resources. “Once I understood the logic of Python, the rest went smooth. I absolutely nailed the final project, and subsequently, I applied for a short internship in Bioinformatics at the end of my second year.” Ula also had the chance to study in Singapore as an exchange student. There, she shared classes with students who had completely different backgrounds than hers, such as, business. It was very enriching for her as she was exposed to the tools they used – like Prezi – and applied it to her own life science projects. She mentions a thought by Walt Disney that drove her, “All our dreams can come true, if we have the courage to pursue them – This quote motivated me to take the decision in my early years to go to France and fight for good grades.”

While she was finishing her Bachelor studies, Ula’s heart remained close to biology since it seemed like a mine of complex problems that she could solve with mathematics and programming. After applying to several Systems Biology Master programs across Europe, she finally chose the most flexible one in Paris at the Center of Interdisciplinary Research, supported by the Bettencourt Foundation. The uniqueness of this program was that a big part of the curriculum was designed by the students themselves and involved several internships. The coordinators encouraged the students to take part in initiatives, create thematic clubs, and of course, have fun with what they did. She decided to spend some time in a lab in Institut Curie, what would later become the home for her Ph.D. “I had to program in Java, and I had no clue about it. I spent half the time teaching myself and that too in a specific context of a software on which I had to work on. I felt demoralized as I was not progressing anywhere, and to make things worse, my supervisor left for 3 months. I was completely lost! But I started asking for help from postdocs in my lab and finally succeeded in coding a part of the software – it even got published!”

The following experience, although discouraging (as Ula would put it), was life changing for her – the iGEM competition. It’s an international competition in Synthetic Biology: modifying organisms to solve real world problems, or to the least, have fun. Her team worked all summer as an interdisciplinary unit to develop beauty products that would help people smell better though reprogramming their skin microbiome. The very idea of creating a product, something that people could use in their everyday life in itself was highly motivating for her. Their team also consisted of designers who helped them a lot with product design and attractive visuals. “This made me realize that science is not necessarily research, it’s very diverse.” Consecutively, during the final internship of her Master’s, she partnered with her friend and colleague Cristina Garcia Timermans to launch a startup called Eco-Smart Solutions. It was aimed at designing probiotic cleaners.

Eco-Smart Solutions – a beautiful failure

The startup was co-founded by Ula and her colleague Cristina, driven by their entrepreneurial enthusiasm after the iGEM competition. Initially, their idea was to design a probiotic cleaner containing bacteria that would eat dirt. This product would clean deeper and independently of the surface texture. Most importantly, it would not result in the creation of chemically resistant bacteria. The to-be treated surface’s natural microbiome would’ve been regulated by their cleaning microbiome, hence preventing the creation of a biofilm to which dirt sticks.

They discerned that the Paris metro system would be a great place to start, as it’s very hard to clean. Furthermore, it’s being cleaned using water at a high pressure that has a detrimental effect on the walls. “We even met the R&D team of Paris metro, but they said that the metro was clean, and basically that was it.” The team did not give up yet. Guided by their teachers, they continued with the project, but in the form of studying the microbiome of Paris metro. This would 1) unveil the metro’s micro-diversity, and, 2) aid them with designing a customized product.

Probiotic cleaners are wide spread. They’re used in hospitals across England, and on a regular basis in the USA, especially for cleaning animal farms (probiotic cleaners have positive impact on an animal’s health). Therefore, they also decided to test the existing probiotic cleaners and natural cleaners like soap. “We had a lot of fun in the lab that was not high-tech, and working with a tight budget within a short time.” They spent their days in the metro collecting samples from stations per their own protocol design. “And in the evenings, we would attend startup events and pitch competitions.” The samples they collected were sent for sequencing, but they encountered issues analysing them. “We asked a bioinformatics research team at the university for assistance and it turned out that the DNA we had collected was not of good quality. Hence, we couldn’t draw any conclusions from the analysis.” As conditions would turn out at the end of their internship, Ula and Cristina decided not to carry on as full-time entrepreneurs as at that time they didn’t have enough capital, and in parallel, they both had secured Ph.D. opportunities.

“We failed, but it was a beautiful failure. We created and executed a project form A-Z, learnt about visualizing aids, making a business plan, and studying the market. Although our skills and resources were not sufficient, I am incredibly fulfilled with this experience.” Right at this moment, a Polish saying crosses her mind which as Ula puts, matches one of the negative aspects of her character. “I’d rather die on my feet, than live on my knees” – Emiliano Zapata. She explains, “We need to be flexible nowadays, and sometimes, we need to get down on our knees to stand up later.”

Crafting the path of a Ph.D. – the challenges ahead

Ula started her Ph.D. in the same lab where she previously interned during her Master’s – engaging in unveiling the complexity of transcriptomic data with unsupervised learning. “This was perfect for me! I had to search for factors that drive biological processes in the ocean of noise.” The lab had also secured funds specifically for her, in case she didn’t secure a scholarship. “What I encountered next was one of my biggest failures, and it hurt my ego a lot!” Ula had applied for a Ph.D. scholarship with a career defining project in mind. She’d also apply for an MBA program for Ph.Ds. “During that time, I was convinced that I didn’t want to stay in academia and so, this project was the perfect opportunity for me. I could accomplish as a researcher while gaining access to management jobs right after my Ph.D.” Unfortunately, she wasn’t selected for the final round of interviews, and it disheartened her. “I even thought of giving up on my Ph.D., but I decided against it as I liked my topic of work.

Severely demotivated and lacking a vision for herself, Ula attended a Ph.D. talent fair in Paris. She realized that companies look for analysts with her skills sets – machine learning, R, Python. She received the same impression upon conversing with the representatives of one company. “This moment opened up a whole new universe for me – Data Science.” Following this defining moment, she decided to craft her extra training skills using free online resources and courses to ultimately land the job of a data scientist following her Ph.D.

Ula describes herself as an aspiring data scientist or a budding data scientist. There’s no definitive explanation for Data Science. “To me, Data Science is analytics, data visualization, machine learning, database management and big data.” Or to be abstract, it’s more like detective work: looking for patterns in data, building predictive models from data, and shaping the world based on accessible information.

For a layman – let’s say there’s a playground where a lot of kids are playing. Every kid is different, but they share some similar characteristics – hair colour, dress type, behaviour etc. Now if we look at say five more playgrounds and try to search for the same characteristics, we’ll end up with some properties that are either common or discrete amongst the kids. Using these properties (data), we can try to predict a prevalent picture (model/pattern) of the characteristics/behaviour of most children. Therefore, what we end up with is a meaningful description of the existing information. This is what Data Science looks like. But of course, it’s not this simple.

“Indeed, the Harvard Business Review has cited Data Science to be the ‘sexiest’ job of the 21st Century”, but why is it so appealing? “It’s appealing due to the power it gives to the companies in all sectors – finance, medicine, education etc. Given the vast availability of resources, it’s also not the hardest profession to move into or learn.” What’s sexy about Data Science is that it’s a relatively new field, geographically unbound, and is spreading like wild fire across all industries and disciplines.

Blogging – a tool for personal branding

Ula’s also a Senior Blogger for PLOS Computational Biology. “PLOS Computational Biology is very generous with its titles. I am a regular contributor for them.” She received communication from PLOS while she was about to attend an international conference on computational biology – ISMB in Orlando, USA. They were looking for live-bloggers for this conference. “I was already thinking of setting up a personal blog at that time, and the communication from PLOS turned out be the right trigger for me.” PLOS appreciated her initial work, and therefore, she continues to write for them on matters pertaining to computational biology, in addition to Data Science and associated Ph.D. careers.

Her personal website highlights the versatility of her writing skills – from career transition to live blogging. As she humbly mentions, “Honestly, I don’t think I’m a good writer. My English is far from perfect, but I keep working on improvising it by reading a lot. The Economist has turned out to be a great resource for me. I also think that apart from me writing the articles that I publish with PLOS, the hands of the editors also wean magic and make my scripts smooth. And as far as content is concerned, I try to be honest and share my experiences and thoughts. Funny as it may seem, I don’t take my writing to be versatile as I don’t write about travels, cooking etc. I only cater to what concerns me the most – Ph.D. and Data Science.”

Writing for her takes a lot of time, but once an article is published, it provides Ula a lot of satisfaction as her audience can read and review her point of view. Plus it’s still faster than writing and publishing in peer review journals.

The Pivigo Ambassador – another feather on the cap

Once Ula defined Data Science as the domain of interest for her Ph.D. studies, she started researching in-depth about it – more so about the skills needed and how to acquire them. There were and still is a range of online courses and materials. “I also subscribed to many mailing lists of Data Science websites”, she discloses her secret to me.

Pivigo – The Data Science Hub as it states on its website is a data science marketplace and training provider based in London. Ula’s determination in exploiting available resources led her to this platform and found the S2DS (Science to Data Science) program. S2DS is a program that helps Ph.D. students or postdocs in STEM to transition to Data Science. Their program takes place both in London and online. Students work on real problems of companies and are extended job opportunities following the program. “I would like to consider this as an option at the culmination of my Ph.D.” Interestingly, Ula found an advertisement about their ambassador program in their newsletter. “I contacted their community manager and I agreed to be the Pivigo ambassador in Paris.” Ula was already settling in.

“My role is to mainly spread the spirit of Data Science and information about the S2DS program”, describes Ula. They’ve also proposed that if she organizes any events in Paris that revolve around Data Science, Pivigo would support her. Ula chips in, “Most importantly, although this role is not a formal engagement, it has inspired me to instigate the community and create a Data Science Club at the Center for Interdisciplinary Research (CRI).”

Lessons from a journey well taken – an inspiration for everyone

For Ula, the journey as an entrepreneur, blogger, and an aspiring data scientist has not been easy. She deems herself fortunate enough to meet her colleague turned friend for co-founding the startup, and to convince their teachers for investing in it. “Although we didn’t play high risk, we didn’t also lose a lot of money, but most importantly we gained a lot in experience”, she confides in me. “I don’t treat blogging seriously as it’s a new role for me. I don’t even force myself to write regularly – I just follow my inspiration. I guess, the hardest part is Data Science. I realize that I need to prove myself in this field and it’s not easy for me with the workload of being a Ph.D. student”.

The time is ripe for Ph.D. students to explore resources outside their lab in addition to polishing and nurturing both new and existing skills. Curiosity and determination play an important role in achieving success. But some may feel diffident to do so. Ula adds, “I reckon if someone is shy, the best way would be to find a buddy from their lab or institute who can accompany them for some outdoor ventures. It’s more motivating to give a joint effort as we feel less insecure. It’s also crucial to realize that courses and networking are not side activities – they are as important as or even more important than your experiments, if you want to continue your career outside of academia.”

Alice Roosevelt Longworth once quoted, “Fill what’s empty. Empty what’s full”. It reflects on the idea of not only enjoying life and taking the best from it, but also share with others our own knowledge, competency, philosophy, and ideas.

Ula’s now following her own plan of gaining skills, reading, and interviewing companies. She also feels that being a part of the Ph.D. Career Support Group keeps her motivated for achieving her goals. She’s optimistic and hopes that future employers will recognize the passion in her for Data Science. And when Ula tastes success in her own terms, we will be there to applaud her.


About Urszula:

She’s a dynamic young scientist with an entrepreneurial spirit and high interest in Big Data, design, fintech & business analytics. She’s a self‐directed innovator working towards creating an opportunity to transition from academia to Data Science companies.

She also runs her own blogging website: https://urszulaczerwinska.github.io/

Follow her on Twitter @UlaLaParis

About Sayantan:

I’m an IRTA postdoctoral visiting fellow at the National Institute on Aging – National Institutes of Health, Baltimore, USA. Apart from science, I invest my time in networking, writing, organizing events, and consolidating efforts to build a platform that brings together scientists and industry professionals to help spread the perception of alternate careers for life science graduates.

Follow me on Twitter @ch_sayantan

 

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

5 Mantras to ‘effectively complete’ THAT Online Course

in That Makes Sense by
Editor’s Note: A Brand New Year is here and everyone is abuzz in their minds with their New Year resolutions. At the Career Support Group (CSG) for STEM PhDs, a lot of members are resolving to fine tune their skills through online courses. But staying focused to complete these courses is no less harder than sustaining that gymming habit meant to lose those oodles of weight gained during the holiday season.  Well, trust Madhurima’s experience to help you in choosing those horses to cruise through those courses. ClubSciWri wishes for a successful and positive start to everyone’s 2017!- Abhinav Dey

 

Online courses have been around for a few years now. Coursera, Venture Labs and many more portals have innumerable courses ranging a wide breadth of topics. While online courses are the perfect place to go for those who want to learn new things, it is also a great way to build skills that will help you go up a few notches in your career. Some of the courses may be directly connected to your area of study or current work, while some may be diametrically opposite. Some of the learnings may be immediately visible and some may be more latent.

 

Five Mantras to effective complete that online course

  1. Choose a course that interests you 

Interest is the key word here.  Do not choose a course just because someone is doing it.  While there is a lot of flexibility, it is essential to remember that you have to figure out the best way to make the most out of them.  So, choose a course topic about which you are motivated to pick up a book or read the slides, end of a long day.

  1. Work with a study partner or a study group

They could be geographically spread out or even your close friends in the same city. It helps to have a partner in crime. Build a rapport and work together, making the most of each of your complementary skills.

  1. Plan for the course and create a time table

Plan the time commitment ahead.  Understand how much time you can invest in a six week course.  Prepare mentally for it, and then physically too. Treat it with as much seriousness as you would a regular course. Timetable for assignments and deadlines, make lists of what you have learnt, what is the next session about and your work that needs to be completed.

  1. Online courses are like a Pandora’s Box

You have to figure out how individual assignments work for you, video lessons, audio lessons and presentations.  During the course, also focus on the learning tool being used. Before you know, you have learnt a whole lot of new things.

  1. Self-motivation is the key

Remind yourself why you are doing this. Be disciplined. While you complete the suggested reading material, read anything you find on the topic. Always helps to widen your horizons, literally.

 

Speaking about my personal experience, I have done a few courses from Stanford Venture Labs on Creativity, Design Thinking and Technology Entrepreneurship. This was almost four years back. I did it with a few friends and the group study sessions were immensely helpful.  Also, the fact that we were from diverse backgrounds ensure lot of new learning, at both conceptual and practical level. I, over the years, have used the techniques/concepts learnt for my training sessions and they have been appreciated.  I guess as I write this piece, it is time I find that next online course.

 

Madhurima Das

About the author:

madhurima-das

A Human Resource Management (HRM) and Policy research consultant; passionate about psychology, poetry and people; grammar, writing and movies. Is also a HRM, Communications and Work-Life trainer. A clinical psychologist, with a doctorate degree in Human Resource Management from the Department of Management Studies, Indian Institute of Science, Bengaluru. Was the Chief Evangelist and Co-founder of Gubbi Labs’ Research Media Services and its flagship venture, the Science Media Center at Indian Institute of Science, Bengaluru. Blogs at www.madhurimadas.blogspot.com.

Edited by: Abhinav Dey

Image source: Pixabay

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Transitioning to a faculty position in Australia: Face to Face with Ranjay Chakraborty

in Face à Face by

The Career Support Group (CSG) for STEM PhDs has brought you stories of career transitions from United States, Europe and India. This time around we go ‘down-under’ and have tete-a-tete with Dr Ranjay Chakraborty (RC). Ranjay is transitioning from a postdoctoral position at Emory University (Atlanta, USA) to academic faculty position at Flinders University (Adelaide, Australia). In his Face-t0-Face interview with Abhinav Dey (AD) he talks about his aspirations, his efforts and his future plans in Australian academia.

AD: How did you know it was time to move on from your postdoctoral fellowship to your first professional position?

RC: After completing my PhD at the Queensland University of Technology, Brisbane (Australia) in 2013, I was excited to join my first postdoctoral position at Emory. In addition to geographical and cultural changes, I was looking forward to my transition from human visual optics research to visual neuroscience research in animal models. I feel, 3.5 years of postdoctoral experience at Emory provided me optimal exposure to the world of academia, and helped me better understand the bigger picture of being an academic. Of course, with time, I matured as a scientist, and started feeling more confident about looking for academic positions. By third year, I made some good publications from the current lab, and was working on an Early Research Career Development award. At that point, I started looking for academic positions (mostly outside the USA due to visa restrictions), and was lucky to get one.

AD: What was your motivation towards an academic career?

RC: I enjoyed doing vision science research during my PhD and postdoctoral fellowship. I have invested so many years in research that I was absolutely sure of continuing it, wherever I go. Although I didn’t get to do a lot, I loved teaching visual optics in India, and during my graduate studies in Australia. I was looking for a platform, where I could bring both research and teaching together. This was my strongest motivation for an academic career. In Australia, my position would also allow me to see patients in the clinic as an optometrist; something that I totally enjoyed in the past.

AD: How do you foresee the academic research environment in Australia?

RC: Similar to the US, establishing a research career in Australia is challenging. From my previous experience, I know that NIH equivalent, National Health and Medical Research Council (NHMRC) and Australian Research Council fundings are extremely competitive. I am looking to develop collaborations within and outside the Vision Science dept. for making competitive grant applications. I will also be looking for industrial funding.

flinders-university

Image courtesy: Ranjay Chakraborty

AD: How did your postdoc training make you competitive for an academic position?

RC: My postdoc training at Emory has been truly instrumental in preparing me for this academic position. It helped me to develop a range of analytical and research skills that were crucial for this position. In addition to basic science research, I learned about academic writing, mentorship, journal and data review, data presentation, collaborative research and many other things that helped me to develop as more mature and confident professional. It has been a magnificent journey from my grad school to the end of this postdoctoral position. I am really thankful to my postdoctoral mentors Drs. Machelle T. Pardue and P. Michael Iuvone for this precious postdoctoral training opportunity at Emory.

AD: What advice do you have for postdocs to make best use of their time?

RC: This is my first position, and I am too young to advice anything in particular. Postdocs are generally very disciplined and assiduous, and they exactly know that it’s time for either “publish or perish”. One small advice – try not to restrain yourself to just “lab and experiments”. Every once in a while traveling and time with family and friends help becoming more productive and focused at work.

AD: Can you briefly describe your plans about the size and mentorship style of your laboratory?

RC: Australian academic positions have a lot more teaching load compared to the positions in the US. In the 1st year, my primary focus would be preparing the lectures, and set up the lab. I am going to take it easy, and keep my lab small at the beginning. I plan to hire a research technician to get started with my projects. I would extend my research group in the future depending on projects and funding situation. I intend to hire people who are deferential, good team players, and inherently motivated to do good research. I would design robust policies in the lab for running experiments, ordering materials, lab meetings with individual lab members/groups, data management and storage, authorships, attending meetings and developing collaborations. I would want my group to be transparent, and feel free about discussing their issues with me and each other.

AD: Do you have teaching responsibilities?

RC: As I mentioned previously, Australian faculty positions have a lot more teaching load compared to the positions in the US. I do not have a lot of teaching experience, and I look forward to this new role in Australia.

AD: Were there any specific resources such as the Office of Postdoctoral Education that you utilized to help you transition into an independent position?

RC: Yes, a number of courses/workshops from Emory Office of Postdoctoral Education have been really helpful in introducing me to several critical aspects of academic positions in the US. I was particularly benefited from K award grant writing course, laboratory management course, and responsible conduct of research ethics course offered by the Emory Office of Postdoctoral Education. I also attended workshops for “how to prepare teaching and research statements”, “how to look and apply for academic positions”, and “preparing CV and NIH statement”. These courses helped me to evaluate whether or not I really wanted to pursue academia.

AD: Do you have any advice for postdocs about grant writing and successfully obtaining funding?

RC: I do not have any major funding to myself, so I am not the best person to advice on that. But, from my postdoctoral experience at Emory, I have learned that early grant applications based on solid pilot data are imperative to applying for successful academic positions. Early applications within the first two years of postdoc (such as departmental grants) do not have to be too extensive, but they set you up for the habit of grant writing. Of course, publications are equally important. As we all know, first 4 years of postdoc are critical for several early career grants in the US.

AD: Do you have any advice for postdocs making the transition to an independent career?

RC: As I mentioned earlier, the key is to decide whether or not you really want to pursue an independent career. If you do, it doesn’t harm to start applying sooner. With a clear and well-structured research aim, decent publications, adequate skill sets, and strong references you could have a decent chance to get a tenure-track position, perhaps stronger than you might think!

Ranjay Chakraborty was interviewed by Abhinav Dey. Abhinav is a postdoctoral fellow at Emory University and a Young Investigator Awardee from Alex’s Lemonade Stand Foundation for Childhood Cancer. He is also the co-founder of PhD Career Support Group (CSG) for STEM PhDs and ClubSciWri

(https://www.linkedin.com/in/abhinavdey)

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Featured image source: Pixabay

 

Transitioning to a faculty position in India – skills that defines one during screening

in That Makes Sense by

As in case with any other academic position, applying for a faculty position in India can be likened to skillful maneuvering of a ship through the storm. After working relentlessly through his/her training phase, a faculty job aspirant finds himself/herself into a more challenging situation where one has to skillfully present the honed skills to be in reckoning in the highly competitive bottlenecked academic job market. I had a quite a long discussion with many of my colleagues planning to transition into the academia in India. Indeed, a great CV with a good publication record is something that definitely pushes the application forward, but our general perception was – there are certain skills that speak volumes of our ability to become future group leaders.

During PhD and post-doctoral tenure, one develops a vast array of skills. However, when it comes to the final destination that is, obtaining a faculty position in a good institution, everything zeros down to the trait that defines the person for the position. In general, a person’s capability to run an independent lab is usually judged during the personal interview stage. However, many faculty position ads (in biological sciences, India) asked for enlistment of skills that one has acquired till the time of application. We found it very peculiar and unusual for an academic position because these kind queries are generally associated with industrial settings. We soon realized that other than scientific output, the initial screening of candidates also involved his/her understanding of the nuances for running an independent group and how he/she has developed skills other than technical, to be proficient in it. A positive attitude on this aspect during the personal interview stage may also result in scoring important points.

The Career Support Group (CSG) discussion on this aspect brought in opinions from Siddharth Tallur, Dileep Vasudevan Thenezhi, Smita Salian Mehta, Hirak S Basu and Kaneenika Sinha whose general suggestion was to focus on the set of skills the selection committee might be looking in their future colleague and hence, highlight them in the application. These are the areas of expertise a faculty aspirant must develop during the training period in order to present oneself more positively in front of the committee.

A broad perspective was obtained, which is summarized below:

1.     Independently mentoring students especially graduate students that also involves ability to describe the problem to them lucidly

2.     What kind of service did you provide to the scientific community? Services such as reviewing papers, organization of conferences/workshops tutorials

3.     Setting up fruitful collaborations which may comprise inter-research groups or with one’s own PI

4.     Writing independent grants – this in fact, shows how a person is able to think independently in spite of working in a research group. Here both successful trials and important misses can be highlighted.

5.     In real sense, applying for a position with an approved grant scores highly in the academic corridors.

6.     Development of a new area of research in PI’s lab and describing what kind of skills, achievements a person has gained towards the completion of the project. This area of research might become one’s core research focus in future and any kind of past publications in the area (as first/co-corresponding author) will go a long way in defining that person’s independence in the field.

7.     Any kind of experimental techniques that one has developed or may have in-depth expertise which he/she can develop in the scientific community and mentor.

8.     A definitive research plan for five years that includes how one intends to supervise the PhD students

9.     The teaching responsibilities donned/shared by the candidate during the training period and the subjects/areas he/she will be comfortable teaching/initiating in the host institution.

In summary, a person aspiring to transition into academia needs to develop/highlight the expertise gained during the training period that depicts how as a prospective faculty, the person has evolved from a co-worker to an independent mentor in the research group. May be these nine points are not that exhaustive, but surely can be further developed by incorporating more challenging experiences shared by the community.

Devanjan Sinha

img_20160914_005131

Presently, I am Assistant Professor at Institute of Science, Banaras Hindu University, India. I completed my doctoral dissertation from Department of Biochemistry, Indian Institute of Science, Bangalore. I briefly worked as a Research Associate at IISc, before transitioning to this position.  Further details on my academic journey is available on LinkedIn: https://www.linkedin.com/in/dr-devanjan-sinha-195a8880

Image source: Pixabay

Edited by: Abhinav Dey

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Stick or twist: finding teaching experience and the postdoctoral dilemma

in That Makes Sense by

Halloween is on its way… and we are familiar with “trick or treat” during that time.

But, are you familiar with “Stick or twist” (a postdoctoral dilemma)?

This is the name of the same game where finding teaching experience during postdoctoral research draws a parallel to trick-o-treating during Halloween. Although first one is fun for kids, the latter is a dilemma. The dilemma being,

  • “Should I stick to pouring all my energy towards high-quality publications in Cell, Science, Nature and prepare for grants proposals with a hope to extend my academic career in research and eventually find tenure;” OR,
  • “Should I twist my working life instead of chasing this dream of being a successful and acclaimed scientist.”

Of course, we all try our best to chase that dream. Like, at the beginning, everybody thinks that a postdoc appointment is meant to serve as the stepping-stone to victory in academic science or a probable position in industry. But let’s be honest, every postdoctoral fellow will not able to secure a job in a top-notch University/Institute due to the current scarcity of academic positions. However, the harsh reality among postdoctoral fellows is that many of us are either realizing this too late, or waiting too long to make a plan with tangible contingency options.

Never expect your mentor to be looking after you, instead you have to look out for yourself, and you have to remember that your boss’s priority is their own career. After all everybody is trying/struggling to survive. Keeping these things in mind, we need to redirect our career goal.

Nowadays, there are a wide variety of academic options available, ranging from research scientists, scientists in industry, science teachers, science writers, science legal consultants, and science policy professionals, etc. If you observe keenly, you might notice that a vast majority of academic careers require a person to be able to teach, either in classroom or in some other format. Thus, learning some teaching skills during postdoctoral research will help you become more suitable for a job in academia.

Now, someone may argue that we don’t need any teaching experience when belonging to a top-notch research institute. But lets keep in mind that every one is not from an exceptional category. May be I’m an oddball. When I began my postdoctoral study, I knew I wanted to be a faculty member who focused on research as well as teaching. After a year, I (perhaps naively) informed my PI that I’m here because I want to be in academia and I don’t want to devote all my time to research. Instead I wanted to spend some time in class room teaching and hence, looking for an exposure. After a couple of meetings and discussions, he understood my goals and he supported me.

Nonetheless, I did face some “fear factors” commonly experienced by many other graduates/postdocs who aspire towards a career in teaching during postdoctoral research. One of them being, “Would I be marked forever as a second-rated scientist by redirecting/refocusing on teaching?”

A career in higher education can be wonderfully rewarding. However, in these uncertain economic times the better prepared you are on entering this career, the more successful you will be. After some deep breathing, I realized that teaching skills are those skills that everyone can use at workplace regardless of career choice.

A few questions/points bubbled in my mind.

#1) What type of teaching skills do we need?

• Look for effective classroom teaching meant for a variety of students in terms of pedagogy
• Ability to convey the competence in subject matter and confidence in one’s ability to teach
• Ability to help students understand the general principles and concepts underlying a particular lesson, (i.e. explain both basic and difficult concepts clearly as well as to present a specific lesson in a larger context, like clinical relevance)
• Ability to ask good questions (testing and studying case histories) and provide feedback to students
• Ability to evaluate teaching performance and adjust lesson plans based on information garnered from students’ questions
• Ability to foster an effective learning environment which includes showing respect for the student, encouraging their intellectual growth and providing them a role model for scholarship with intellectual vigor.

#2) How can we find or get the teaching exposure/experiences?

Mentors as Resources: As starters, you can ask your PI about the possible opportunities in universities or colleges in your neighborhood.

Institutional Resources: You can explore your institutional resources by checking with your office of postdoctoral education for upcoming opportunities.

Funding Resources: There are some new teaching postdoctoral fellowships available nowadays. As for example, I recently discovered a job advertisement for a “teaching postdoctoral fellow” in one of the universities. After I submitted my application, I did get an interview call. During the telephone conversation with the Chair of the search committee, I learnt that they were looking for someone just like me–someone who would use the teaching postdoctoral fellowship as a stepping-stone from postdoctoral fellow to a faculty position by devoting equal effort to teaching and research. There is a possibility to be promoted as a tenured track faculty position within the department after successful completion of another round of interview. I think this type of postdoc can provide an advanced education beyond what is typically provided in graduate school. Just like a traditional research postdoctoral appointment, the training of the teaching postdoc generally focuses on science education instead of science research. There are several programs that are available like FIRST , PERT, SPIRE, PENN-PORT, NU-START , MERIT, IRADCA.

Other Resources: There are other ways to develop and refine teaching skills during postdoctoral training, such as to utilize excellent teaching resources available both as hardcopies and online resources and attending training conferences.

#3) Tips for getting teaching experience

• Discuss your topic/s of interest in getting some kind of teaching experience with your PI/mentor. This should be done early (possibly during your interview for the postdoctoral position) so that training opportunities can be accommodated during the postdoctoral period (if available).
• If your research mentors cannot commit their time to the teaching development, find an independent teaching mentor or alternate persons who can be involved/helped in the training process.
• Try to attend classes, workshops, or seminars on teaching that are offered at your institution, particularly courses that offer in-depth preparation for teaching and professional development as a future faculty (PFF Program). I have attended some classes of graduate course work just to learn how the professors deliver their lecture in the classroom here in USA.
• Explore teaching publications and online resources to learn about teaching techniques and best practices.
• Arrange to observe a faculty-taught class session in your department and discuss with the instructor about his/her approaches to teaching. If possible, ask for a supervised teaching and feedback session with a faculty mentor.
• Teach! Give your shot to a variety of teaching experiences (leading the lab or discussion sessions, review sessions, lectures, individual tutoring or team teaching).

#4) Teaching and research is not diametrically opposite

You may hear that teaching will take an inordinate amount of time during the first few years to settle down everything. Popular opinion is that teaching “takes time away from my research”. We should remember one thing as professors/mentors we are expected to be educating students. At least in my opinion, being a “good teacher,” can have many advantages, not the least of which involves assisting in your research program. Let’s try to think in this way, if you subscribe to the philosophy that your research can benefit your teaching and your teaching can benefit your research, then I believe that teaching can have a remarkable pay-off for your research program. In other words, as a new assistant professor you may not have the luxury of having a good graduate research assistant to help you with your research. One probable solution to this is to recruit undergraduates to become involved in your research. It will be a good help for the early career independent scientist. But even this would be herculean if you are not viewed as a passionate teacher who cares about his/her subject and encouraging their mentees’ intellectual growth.

#5) Challenges associated with teaching.

Every job has their own challenges, without facing those challenges, you cannot move forward and you have to face them everywhere. In the teaching job the following are included:

1) Time management: You have to find and manage time to prepare everything (i.e. setting aside time for class preparation, reading, and grading). The course coordinator may provide the course material and in that case you have less pressure. Another important point is to be always being chained to the lectern. In other words, movement is important in teaching because it gets you closer to the students and it indicates that you are interested in teaching them. Of course, always try to be “present” in the classroom (always be enthusiastic; modulate the pitch and cadence of your voice to give the impression that this is the greatest thing imaginable that you are talking about).

Being a good teacher demands putting in time and effort. More importantly, it demands that if you want to be successful at teaching then you should not be simply seen treating it as a necessary evil. I know it’s hard but you can do it.

2) Building Blocks (promoting respect for cultural diversity in a multiethnic classroom): A teacher needs creativity, extra effort, diligence, and courage to discover the diversity. Teachers in multiethnic classrooms must be open to their students. They should put forth the effort needed to get to know their students both inside and outside of class. The students will become estranged from one another and the teacher if a teacher is hesitant about being open. In order to be open, teachers must be interested in their students and willing to adapt to avoid taking things personally, or from getting judgmental.

3) Overcoming Stereotypes: To cope up in a multiethnic context and to engage students effectively in the learning process, a teacher should know their students and their academic abilities individually. Avoid relying on racial or ethnic stereotypes as well as on any prior experience with other students of similar backgrounds. Based on their student analyses, the teacher needs to plan the course accordingly so as to make the material accessible for all students: be it the syllabi, or the course assignments. Overcoming stereotypes will also help you in understanding the potential classroom dynamics and in learning how to deal with sensitive moments/topics.

So basically the cardinal rule is: 1) Learn as much as you can about racial, ethnic, and cultural groups other than your own and be aware of their sensitivities. 2) NEVER make any assumptions about an individual based on the racial, ethnic, or cultural groups he or she belongs to. Treat each student first and foremost as an individual.

Final thought??

Finally, be willing to pursue an unusual career path if your intuition tells you that it may be suitable to your passions and interests. The “teaching postdoc” was not a position I envisioned for myself 2-3 years ago. Yet, in this position I have found an opportunity to do what I love and impact the way that a university teaches undergraduates and prepares graduate students for faculty careers that emphasize teaching and learning. In my opinion, the joint research and teaching postdoc is ideal for the greatest depth of academic jobs. This is because they are getting supervisory and multitasking experience.

So find a place that has top-notch research facilities but also cares enough about teaching and go for it. Yes, such universities along with special programs do exist.

Tuhin Das

About the author:

td-photo

Tuhin Das is currently working as a Visiting Investigator in Cell Biology program of Memorial Sloan Kettering Cancer Center, New York City, New York. He is interested in exploring the role of tumor microenvironment in regulation and enrichment of breast cancer stem cells (CSCs) in 3D nanofibrous scaffold platform by application of evolutionary dynamics in cancer drug resistance. He is studying the mitotic delay in response to centrosome loss using CRISPR-CAS9 system.

In addition, Tuhin is serving as a consulting editor of the journal “Breast Cancer: Targets and Therapy”. He has served as an academic editor for Journal of Cancer Therapy and a reviewer of several high impact scientific peer-reviewed journals.

He is an active member of American Association for the Advancement of Science (AAAS) and American Society of Cell Biology (ASCB). He is also an associate member of American Association of Cancer Research (AACR).

Edited by: Abhinav Dey

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Reading scientific literature – for dummies

in That Makes Sense by

If you are interested in the latest science breakthroughs, there is some good news for you. Be it to know more about a disease your mother has, to write a newspaper article about the latest scientific discovery, or to look for the latest research on a topic of undergraduate study; scientific literature is increasingly becoming available at your fingertips!
Recently, there has been a significant push in support of open access publishing in the scientific field. This “unrestricted online access to peer-reviewed scientific research”, as Wikipedia defines it, is supposed to create a revolution in scientific communication. The main argument in its favour is that research done with tax-payer’s money should be available to the public for free, and the internet has greatly made open access possible.
However, an important question that this movement has ignored, is this – how would the general public be able to understand, make sense of, and utilize this information in the right way? Scientific literature is often detailed and boring, with scientific jargon scattered all over, that only scientists from a specific field are able to understand. It’s a running joke between researchers that reading a scientific paper is the best cure for insomnia! So, how would a lay person be able to understand this information even if its made available to him?
If it helps, a paper on amygdala anatomy is as difficult to understand for me as it is for you, even though I am at the end of my PhD in life sciences – simply because I am in a completely different field. However, with some basic knowledge of science, you can actually manage to understand the scientific discoveries in a particular field if you have some time and patience.
In this post, I have given some pointers to simplify navigating through the ocean of scientific literature with very little or no knowledge of the field.

.
Don’t let the jargon scare you!

Sample this –

nrc3545-f4
Scientists are notorious for using the most complex-sounding tongue-twisters in their papers. But don’t let it deter you. It would help to have a medical dictionary or Wikipedia handy, to look up terms you don’t understand. The best papers are the ones where each term is introduced and explained properly. Also, try to understand that commonly used words have a slightly different meaning in scientific literature.

Where to look for an article?
For biomedical articles you can search on Pubmed, the repository of the NIH. A search for “alzheimer’s” gives all articles with the word anywhere in the paper. For more specific searches, you can use “alzheimer’s [Title/Abstract]”. You can also use other parameters for searching, like Author and date of publication and Boolean operators like AND, OR, NOT. Google scholar also gives good results.

If the article you are searching for is not available for free, try your nearest University library. Most Universities have access to paid journals. There are some online torrents, sites and even a Facebook page where academicians share papers that they have access to.

Start with reviews
Reviews combine the results from several articles to give a good overview of the field. If you are new to the field or want information in layman terms, reviews are generally a good starting point. Even as a researcher, reviews are the best place to start before we dive into the huge pool of literature on a topic. The downside is that you might not learn about fresh research that got published in the last few months. If a review seems too difficult, start with a textbook entry. There are many free books available on NCBI Books.

How to read a journal article
A research paper has several sections, generally arranged in a particular order – Abstract, Introduction, Methods, Results, Discussion and Conclusion. However, if you want to find information quickly without delving into all the details, you can follow this order:

Read the Abstract first and the Conclusion – this will give you a quick idea about what the paper is all about, and the highlights of the research presented.

Then read the Introduction and Discussion – This will give you an idea of previous research in the field. The ‘Introduction’ introduces the topic, and cites related literature. The ‘discussion’ explains the implications of the research carried out by the authors, and how it relates to the currently available knowledge.

And finally the Results section, which details the experiments performed and the exact outcome of all experiments. If you must read this section, start with analyzing each figure and table, and read their captions. Try to draw your own conclusions, and mark the irregularities in the data. Be critical of what is represented in the figures and what is claimed in the text, and if they indeed match!

Keep in mind the basic rules of statistics when analyzing data:

  • What information is represented on the X and Y-axes on graphs? Then think about what the data really indicates.
  • What is the sample size used for the study? In most cases, the bigger the sample size, the more reliable the results.
  • Is there any apparent bias in the sample? For example, did they consider only Caucasians for the study. In that case, is it still relevant for Asians?
  • Are there multiple experiments pointing to the same conclusion?

The Methods section is best left to a trained researcher in the field, and is generally not required to be understood to know the implications of the research.

Understand the general consensus in the field
If you are trying to find out if product x causes cancer, try to read several articles on the topic. This will give you an idea of what the best researchers in the field think about the topic. This way, you can also learn about different perspectives – one researcher might claim it causes cancer, while another might show it causes cancer only under certain conditions. Also, make sure that the articles are not from the same laboratory. For Biomedical literature, you can check the last author(s), who is generally the Principal Investigator (or Professor), and their University affiliations. If the articles published by different authors at different universities have similar conclusions, it shows that the research is reproducible and there is a consensus.

Impact factor is not the best indicator of quality
This is a mistake that I made until I was a Masters student! The impact factor of a journal indicates how well-cited the articles from this journal are. However, the most highly rated journals are like newspapers looking for the most sensational news. Although, most research published here is of good quality, it is best not to take it as the absolute truth. Instead, try to look for how well-cited and well-researched the article itself is. When you read an article in Pubmed, you can see how many times this article has been cited by others.

Take it with a pinch of salt
Scientific research is complicated and difficult, because one is charting new territories. As my adviser says, researchers are like the blind men trying to figure out an elephant. Each has their own version of the “truth” and all of them could be correct, or wrong! Hence, be careful about jumping to strong conclusions. High impact, well cited articles could be proven wrong or insufficient at a later point.

First published on LinkedIn on Jan 27, 2015

 

Me_DFX9112-crop

About the author: Czuee has a PhD from University of Lausanne, Switzerland and Masters from IIT Bombay. She has previously worked at IISc-Monsanto collaboration and as a patent analyst at Evalueserve. Apart from her research on proteins involved in brain signalling and diabetes, she is interested in scientific communication, entrepreneurship and runs a webcomic (http://gradschoolmuse-icals.thecomicseries.com/).

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Go to Top
Close
loading...
%d bloggers like this: