Scientists Simplifying Science

Tag archive

science

Transitioning to a faculty position in Australia: Face to Face with Ranjay Chakraborty

in Face à Face by

The Career Support Group (CSG) for STEM PhDs has brought you stories of career transitions from United States, Europe and India. This time around we go ‘down-under’ and have tete-a-tete with Dr Ranjay Chakraborty (RC). Ranjay is transitioning from a postdoctoral position at Emory University (Atlanta, USA) to academic faculty position at Flinders University (Adelaide, Australia). In his Face-t0-Face interview with Abhinav Dey (AD) he talks about his aspirations, his efforts and his future plans in Australian academia.

AD: How did you know it was time to move on from your postdoctoral fellowship to your first professional position?

RC: After completing my PhD at the Queensland University of Technology, Brisbane (Australia) in 2013, I was excited to join my first postdoctoral position at Emory. In addition to geographical and cultural changes, I was looking forward to my transition from human visual optics research to visual neuroscience research in animal models. I feel, 3.5 years of postdoctoral experience at Emory provided me optimal exposure to the world of academia, and helped me better understand the bigger picture of being an academic. Of course, with time, I matured as a scientist, and started feeling more confident about looking for academic positions. By third year, I made some good publications from the current lab, and was working on an Early Research Career Development award. At that point, I started looking for academic positions (mostly outside the USA due to visa restrictions), and was lucky to get one.

AD: What was your motivation towards an academic career?

RC: I enjoyed doing vision science research during my PhD and postdoctoral fellowship. I have invested so many years in research that I was absolutely sure of continuing it, wherever I go. Although I didn’t get to do a lot, I loved teaching visual optics in India, and during my graduate studies in Australia. I was looking for a platform, where I could bring both research and teaching together. This was my strongest motivation for an academic career. In Australia, my position would also allow me to see patients in the clinic as an optometrist; something that I totally enjoyed in the past.

AD: How do you foresee the academic research environment in Australia?

RC: Similar to the US, establishing a research career in Australia is challenging. From my previous experience, I know that NIH equivalent, National Health and Medical Research Council (NHMRC) and Australian Research Council fundings are extremely competitive. I am looking to develop collaborations within and outside the Vision Science dept. for making competitive grant applications. I will also be looking for industrial funding.

flinders-university

Image courtesy: Ranjay Chakraborty

AD: How did your postdoc training make you competitive for an academic position?

RC: My postdoc training at Emory has been truly instrumental in preparing me for this academic position. It helped me to develop a range of analytical and research skills that were crucial for this position. In addition to basic science research, I learned about academic writing, mentorship, journal and data review, data presentation, collaborative research and many other things that helped me to develop as more mature and confident professional. It has been a magnificent journey from my grad school to the end of this postdoctoral position. I am really thankful to my postdoctoral mentors Drs. Machelle T. Pardue and P. Michael Iuvone for this precious postdoctoral training opportunity at Emory.

AD: What advice do you have for postdocs to make best use of their time?

RC: This is my first position, and I am too young to advice anything in particular. Postdocs are generally very disciplined and assiduous, and they exactly know that it’s time for either “publish or perish”. One small advice – try not to restrain yourself to just “lab and experiments”. Every once in a while traveling and time with family and friends help becoming more productive and focused at work.

AD: Can you briefly describe your plans about the size and mentorship style of your laboratory?

RC: Australian academic positions have a lot more teaching load compared to the positions in the US. In the 1st year, my primary focus would be preparing the lectures, and set up the lab. I am going to take it easy, and keep my lab small at the beginning. I plan to hire a research technician to get started with my projects. I would extend my research group in the future depending on projects and funding situation. I intend to hire people who are deferential, good team players, and inherently motivated to do good research. I would design robust policies in the lab for running experiments, ordering materials, lab meetings with individual lab members/groups, data management and storage, authorships, attending meetings and developing collaborations. I would want my group to be transparent, and feel free about discussing their issues with me and each other.

AD: Do you have teaching responsibilities?

RC: As I mentioned previously, Australian faculty positions have a lot more teaching load compared to the positions in the US. I do not have a lot of teaching experience, and I look forward to this new role in Australia.

AD: Were there any specific resources such as the Office of Postdoctoral Education that you utilized to help you transition into an independent position?

RC: Yes, a number of courses/workshops from Emory Office of Postdoctoral Education have been really helpful in introducing me to several critical aspects of academic positions in the US. I was particularly benefited from K award grant writing course, laboratory management course, and responsible conduct of research ethics course offered by the Emory Office of Postdoctoral Education. I also attended workshops for “how to prepare teaching and research statements”, “how to look and apply for academic positions”, and “preparing CV and NIH statement”. These courses helped me to evaluate whether or not I really wanted to pursue academia.

AD: Do you have any advice for postdocs about grant writing and successfully obtaining funding?

RC: I do not have any major funding to myself, so I am not the best person to advice on that. But, from my postdoctoral experience at Emory, I have learned that early grant applications based on solid pilot data are imperative to applying for successful academic positions. Early applications within the first two years of postdoc (such as departmental grants) do not have to be too extensive, but they set you up for the habit of grant writing. Of course, publications are equally important. As we all know, first 4 years of postdoc are critical for several early career grants in the US.

AD: Do you have any advice for postdocs making the transition to an independent career?

RC: As I mentioned earlier, the key is to decide whether or not you really want to pursue an independent career. If you do, it doesn’t harm to start applying sooner. With a clear and well-structured research aim, decent publications, adequate skill sets, and strong references you could have a decent chance to get a tenure-track position, perhaps stronger than you might think!

Ranjay Chakraborty was interviewed by Abhinav Dey. Abhinav is a postdoctoral fellow at Emory University and a Young Investigator Awardee from Alex’s Lemonade Stand Foundation for Childhood Cancer. He is also the co-founder of PhD Career Support Group (CSG) for STEM PhDs and ClubSciWri

(https://www.linkedin.com/in/abhinavdey)

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Featured image source: Pixabay

 

From cloning genes to directing X-rays: Face to Face with Nishant Kumar Varshney

in Face à Face by

Dr Nishant Kumar Varshney is working as a Beamline Scientist on an Indo-Italian Macromolecular Crystallography beamline XRD2 at Elettra Sincrotrone, Trieste, Italy, which will be open to Users in start of the 2017. The Career Support Group (CSG) for STEM PhDs caught up with him about his career and experience while working in an unconventional postdoctoral career of a Beamline Scientist after a PhD in Structural Biology.

He did his bachelors in Chemistry from DU and Masters in Marine Biotechnology from Goa University in 2005. Completed his PhD in 2013 from Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India on structure-function relationship of three enzymes that has industrial and therapeutic applications. During his PhD, he received Commonwealth Split-Site Scholarship to work for an year in York Structural Biology Laboratory, University of York, UK, where he developed his interest in the field of Structure Based Drug Discovery field.

me_2

In Nishant’s (NKV) words, “First, I would like to thank Abhinav Dey (AD) for adding me to CSG group and now giving me this opportunity to share my thoughts about new Indo-Italian joint venture at Elettra Synchrotron, Trieste, Italy which we Inaugurated last month.”

14711082_1239623179443730_8023412272330443242_o

(XRD2 Beamline; Picture source: NKV)

AD: During your graduate school, when did you realize you wanted to try a different research-based career than conventional postdoc?

NKV: Actually the thought and the opportunity came after the PhD, when I was working as Research Associate (RA) in National Center for Cell Science (NCCS), Pune. During my PhD, I was working both at the bench (cloning, expressing, purifying and setting up protein for crystallization) as well as collecting data at our home source for my proteins and sometimes helping other collaborators. Like most of the graduate students, I dreamt of getting a conventional post doc position abroad and coming back after few years for some decent permanent position in India. It was during RA-ship, that I saw the ad for a Beamline Scientist position at the new Indian beamline at Elettra. I thought of it as a good opportunity to not only learn about the working of beamlines but also having plenty of time to play and learn with data collection strategies to get best out of your protein crystals. Moreover, the idea of helping different users with different projects and, if possible, making some worthy contribution to their projects excited me too.

AD: What is your typical work day like?

NKV: Most often our day starts with a black filter coffee at 9 🙂 and ends around 6pm. Currently, we are at the final stages of commissioning the beamline and implementing an automated instrument on the experimental table. Since working at the beamline is a first time for me, my work schedule usually revolves around my local supervisor and Head of our group, Maurizio. We help our supervisors with the work and learn out of it. Everyday there is something new to learn. We set small targets with deadlines and sometimes we work till late to meet those deadlines. Also being an industry, there are many other usual administrative/non administrative appointments also to be taken care of.

AD: Do you think having a PhD was an advantage for you in the current job?

NKV: Yes. Experience and a degree in structural biology were the essential educational qualifications for this job. I was brought into the field of X-ray diffraction, protein crystallization, three-dimensional structures etc. in practice during my PhD only. Having hands-on experience with these techniques and a visit to a Beamline in Diamond, UK during my Commonwealth Scholarship tenure gave me experience and confidence to apply for this job. Some technical terms and what’s behind the walls of Experimental Hutch was totally new to me in the beginning but I think I am getting better day-by-day.

AD: How was the transition from a bench to a synchrotron?

NKV: I would say transition was not that easy. Coming from enjoying a mostly wet lab, handling buffers/proteins and transitioning to the technical aspects of a synchrotron where I was expected to understand as well as install beamline components, alignments, installing vacuum etc. was initially too much technical for me. Mathematics has not been my strongest subject so I am still trying to get better with the numbers.

AD: What would you recommend as first steps for students/postdocs interested in pursuing a fellowship in handling this kind of job?

NKV: If one is coming to synchrotron as a user, I would say, apart from having familiarity with data processing programs and knowing your proteins, you need not to worried about what’s behind the walls of Experimental Hutch. Beamline staff should teach you how things work at the Experimental table and how to collect data. But if someone wants to be a Beamline Scientist or a Beamline Postdoc, first step is to develop your love for the technical aspects of a beamlines. Brushing up your Physics or say Biophysics will also help you to understand your work. It is also important to keep in mind that it is not a 9-5 job and you should be ready to devote long days sometimes.

AD: Having gone through interviews as an applicant yourself, what are a couple of things that could help a PhD standout from the crowd?

NKV: Especially for a job at the Beamlines, working knowledge of the beamline, however little it may be, through regular visits to the synchrotron for data collection and processing the data on your own will make you stand out. Familiarity with different programs for data collection to structure deposition will help you for the job. Apart from that, one should enjoy working with the users and be ready to help them to sort out the technical as well as practical problems outside the normal office hours.

AD: Was there anything (positive or negative) that you were surprised about this job/profession that you didn’t expect until you were in it?

NKV: As a matter of personal opinion, anyone who starts the unconventional career, will wish to have a sense of stability in his/her tenure. As I am working in an Italian Industry, as a visiting Scientist on an India-funded project, there is always an insecurity regarding the length and timing of the next extension. Moreover, the absence of funds available for in-house research and for attending/presenting work in the conferences was not what I expected.

AD: Please tell us about the new Indo-Italian venture and what do you foresee of this collaboration for the development of science in India?

NKV: Till the date, India is either renting beamtimes for macromolecular crystallography e.g. BM14 beamline in ESRF or funding visits to other beamlines of the world. This is the first time when India is a partner right from the design, construction, commissioning and maintenance of two beamlines at synchrotron. The XRD2 and Xpress beamlines are a part of a scientific partnership between India and Italy under a project administered through the Indian Institute of Science (IISc) at Bangalore with financial support from Department of Science and Technology (DST), Govt. of India and Elettra Sincrotrone,Trieste. The Xpress experimental station has been constructed to study the structure of materials under high- pressure using the technique of X-ray diffraction of samples subjected to the action of two diamonds that can exert higher pressures to 50 GPa. In this way the researchers will be able to access the possibility of synthesizing new superconducting materials, harder and more resistant. This beamline will also be applied in other areas, such as mineralogy and geophysics. XRD2 is a dedicated beamline to determine three-dimensional structures of proteins and biological macromolecules with application in biology, medicine, pharmaceuticals and biotechnology. XRD2 is an highly automated and tunable beamline with state of the art instruments which will allow to collect faster X-ray diffraction data from protein crystals in highly automated way better than collected using home source. With 50% share in the project, now Indian crystallographers and High Pressure diffraction groups will have plenty of beamtime accessible to them. Once the proposal has been accepted, DST will provide the travel and daily cost funds.

AD: What are the career possibilities after being trained at the cutting edge of your field?

NKV: The field of macromolecular crystallography is still in a developing stage. There is lot to explore and develop in the field right from the data collection step to relate the structure to its function. With the experience at the synchrotron, prospects of developing your own research in the field are always open. Working in Pharmaceuticals Industries mainly involved in Structure based Drug Discovery is another option. With all the knowledge of the structural biology, a career in academics is also a possibility. Moreover, with the advent of Free-Electron lasers and new developments in alternative techniques, three-dimensional structure determination of macromolecules using serial crystallography and Cryo-Electron Microscopy and Cryo-Imaging techniques are the new open fields where experience in structural biology is a desirable qualification.
I hope, these facilities will be very beneficial to our Indian researchers.

 

 

Nishant Kumar Varshney was interviewed by Abhinav Dey. Abhinav is a postdoctoral fellow at Emory University and a Young Investigator Awardee from Alex’s Lemonade Stand Foundation for Childhood Cancer. He is also the co-founder of PhD Career Support Group (CSG) for STEM PhDs and ClubSciWri

(https://www.linkedin.com/in/abhinavdey)

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Featured image source: Pixabay

The question: Burning excess calories post exercise

in SciWorld/That Makes Sense by

Combining resistance and endurance exercises potentiates fat loss and muscle hypertrophy

You don’t burn calories while working out alone, body continues to burn calories even after the cessation of the workout. It was attributed to excess post-exercise oxygen consumption (EPOC), which remains high after aerobic exercise as well as anaerobic exercise. In addition, lactic acid produced, during strenuous exercise, in muscle cells has to be diverted/oxidized back to other metabolites, which might also contribute to the excess calorie consumption after the workout. These 2 hypotheses however could not completely explain burning of more calories after exercise.

pic-1

The science behind

Researchers at Harvard University detailed the science behind these hypotheses. They found that endurance induces a hormone which converts white adipose tissue (tissue which stores fat) into brown adipose tissue (tissue which burns fat). Irisin is the hormone produced upon endurance exercise in mice and human subjects which regulates this process. Irisin has been in the news ever since as an exercise hormone. In another study, by the same group, they found the scientific reason why resistance exercise induces muscle hypertrophy. When human subjects performed resistance exercises such as leg press, chest press etc., Insulin like growth factor (a hallmark protein for muscle hypertrophy) production was enhanced.

Interestingly, both the endurance and resistance exercise benefits were under the control of a master protein called PGC1 α. This protein is differentially produced in the body according the nature of the exercise performed. If endurance exercise is performed it produces the beneficial effects of burning fat; if resistance exercise is done muscle hypertrophy results.

PGC1 α is very important protein, a person’s athletic performance is determined in part by it. Genetic mutations in this protein affect athletic performance of the individual.

Kill two birds with one stone: resistance and endurance exercise

It was also reported that PGC1-α is induced at a higher level when resistance (anaerobic) exercise is performed after endurance (aerobic) exercise, which is called concurrent training. Combining both exercises, thus, will have a synergistic effect on overall health.

The future

There has been no golden rule for how much workout has to be done for achieving desirable health benefits- either fat loss or muscle gain. It could be possible, in future, that amount of production might be used as readout for endurance or resistance exercise for each individual. Proper exercise regime and nutritious diet could help maintain general wellbeing and attain dream physique.

 

 

About the Author:

srinvas

 

Srinivas Aluri is postdoc at Albert Einstein College, NY. He is a fitness enthusiast, exercise and diet expert. He is also an international sports science association certified fitness trainer as well as American Heart Association’s CPR/AED certified professional.

P.S: This article was blogged at an untraceable place. It’s been edited and published here.

 

Photo source: builtlean.com and Pixabay

Creative Commons License
This work by ClubSciWri is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Go to Top